Abstract

The marine algae Ulva spp. are commonly used as model biofouling organisms. As biofouling studies are primarily conducted using field-collected specimens, factors including species identity, seasonal availability, and physiological status can hinder the replicability of the results. To address these limitations, a protocol was developed for the on-demand laboratory culture and release of Ulva zoospores. The biofouling potential of laboratory-cultured and field-collected Ulva blades was compared using a waterjet. No significant differences were found between field and laboratory-cultured samples in either spore adhesion (before waterjet) or the proportion of spores retained after waterjet exposure. However, there was significant variability within each session type in pre- and post-waterjet exposures, indicating that spore adhesion and retention levels vary significantly among trial runs. In addition, all our laboratory cultures were Ulva Clade C (LPP complex). In contrast, our field samples contained a mix of Ulva Clade C, U. compressa clade I, and U. flexuosa Clade D. This protocol for on-demand production of Ulva spores can improve biofouling research approaches, enables comparison of results across laboratories and regions, and accelerate the development of anti-biofouling strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.