Abstract
Our specific aim was to investigate whether a local static magnetic field of a permanent magnet, of either pole, affects resting skin blood perfusion. This was done by measuring skin blood perfusion (SBF) by laser-Doppler in dorsum skin of 2nd and 4th fingers of the nondominant hands of 12 volunteers. Both fingers were first exposed to sham magnets, and then the 2nd finger was exposed alternately to north and south poles of a neodymium magnet that produced a field of 4024 G at the palmar part of the finger and a field of 879 ± 52 G at the site of finger dorsum SBF measurement. Each of the three exposure intervals was 15 min. SBF values were analyzed by first computing the average SBF during the last 5 min of each of the three 15-min exposure intervals. These SBF averages were initially tested for magnet or magnet-pole effects by analysis of variance for repeated measures with finger as a factor, using SBF values for each finger as the test variable. Results of this analysis revealed a large variability in finger SBF among subjects and no significant difference in SBF between exposure conditions ( P = 0.705) or any significant interaction between SBF and finger ( P = 0.396). However, when intersubject variability was reduced by using the flow difference between treated and nontreated fingers in each exposure interval as the test variable, a statistically significant effect ( P = 0.016) attributable to magnet exposure was uncovered. This effect was a reduction in resting SBF in the magnet-exposed fingers that was similar for north and south pole magnet exposure. The present findings are the first to demonstrate a direct effect of locally applied magnets on human skin blood perfusion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have