Abstract

Background: Cystic fibrosis (CF) affects the autonomic nervous system (ANS) and exercise in healthy children modulates the interaction between sympathetic and parasympathetic activity. This study aimed to evaluate the effects of a short-term resistance exercise program on heart rate variability (HRV) in children and adolescents with CF.Methods: A randomized controlled trial was carried out in children diagnosed with CF aged 6–18 years. Individuals were divided into two groups: control (CON) and resistance-training (EX). Individuals in the EX group completed an individualized guided resistance program (5-RM—60–80%) for 8 weeks (3 sessions of 60 min/week). Upper and lower limbs exercises (seated bench press, seated lateral row, and leg press) were used. HRV was measured using a Suunto watch with subjects in lying position.Results: Nineteen subjects (13 boys) were included (CON = 11; and EX = 8). Mean age was 12.2 ± 3.3, FEV1 (forced expiratory volume in the first second) z-score was 1.72 ± 1.54 and peak oxygen consumption (VO2peak) 42.7 ± 7.4 mL.Kg–1.min–1. Exercise induced significant changes in the frequency-domain variables, including a decrease in LF power (p = 0.001, d = 0.98) and LF/HF ratio (p = 0.020, d = 0.92), and an increase in HF power (p = 0.001, d = −0.97), compared to the CON group. No significant changes were found for time-domain variables, although increases with a moderate effect size were seen for SDNN (p = 0.152, d = −0.41) and RMSSD (p = 0.059, d = −0.49) compared to the CON group.Conclusion: A short-term resistance exercise-training program was able to modulate HRV in children and adolescents with CF presenting mild to moderate lung function impairment and good physical condition.Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04293926.

Highlights

  • Cystic fibrosis (CF) is an autosomal recessive disease caused by the mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, located in the chromosome 7 (Wainwright et al, 1985)

  • This study aimed to evaluate the effects of a short-term resistance exercise program on heart rate variability (HRV) in children and adolescents with CF

  • No significant changes were found for time-domain variables, increases with a moderate effect size were seen for standard deviation of R-R intervals (SDNN) (p = 0.152, d = −0.41) and RMSSD (p = 0.059, d = −0.49) compared to the CON group

Read more

Summary

Introduction

Cystic fibrosis (CF) is an autosomal recessive disease caused by the mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, located in the chromosome 7 (Wainwright et al, 1985). CFTR dysfunction may lead to abnormalities in the ANS (Davis and Kaliner, 1983), as it facilitates neuronal activity, as well as plays an important role in the regulation of energy homeostasis, motor function and autonomic control of visceral organs, such as the heart (Kahle et al, 2008). A simple and non-invasive method to analyze the function of ANS is to record the sympathetic-parasympathetic balance measured through heart rate variability (HRV). This method allows a non-invasive overview of the nervous system. Cystic fibrosis (CF) affects the autonomic nervous system (ANS) and exercise in healthy children modulates the interaction between sympathetic and parasympathetic activity. This study aimed to evaluate the effects of a short-term resistance exercise program on heart rate variability (HRV) in children and adolescents with CF

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.