Abstract
Six female littermate piglets were used in an experiment to evaluate the mRNA expression in tissues from piglets given one or two 1mL injections of iron dextran (200mg Fe/mL). All piglets in the litter were administered the first 1mL injection < 24h after birth. On day 7, piglets were paired by weight (mean body weight = 1.72 ± 0.13kg) and one piglet from each pair was randomly selected as control (CON) and the other received a second injection (+Fe). At weaning on day 22, each piglet was anesthetized, and samples of liver and duodenum were taken from the anesthetized piglets and preserved until mRNA extraction. differential gene expression data were analyzed with a fold change cutoff (FC) of |1.2| P < 0.05. Pathway analysis was conducted with Z-score cutoff of P < 0.05. In the duodenum 435 genes were significantly changed with a FC ≥ |1.2| P < 0.05. In the duodenum, Claudin 1 and Claudin 2 were inversely affected by + Fe. Claudin 1 (CLDN1) plays a key role in cell-to-cell adhesion in the epithelial cell sheets and was upregulated (FC = 4.48, P = 0.0423). Claudin 2 (CLDN2) is expressed in cation leaky epithelia, especially during disease or inflammation and was downregulated (FC = -1.41, P = 0.0097). In the liver, 362 genes were expressed with a FC ≥ |1.2| P < 0.05. The gene most affected by a second dose of 200mg Fe was hepcidin antimicrobial peptide (HAMP) with a FC of 40.8. HAMP is a liver-produced hormone that is the main circulating regulator of Fe absorption and distribution across tissues. It also controls the major flows of Fe into plasma by promoting endocytosis and degradation of ferroportin (SLC4A1). This leads to the retention of Fe in Fe-exporting cells and decreased flow of Fe into plasma. Gene expression related to metabolic pathway changes in the duodenum and liver provides evidence for the improved feed conversion and growth rates in piglets given two iron injections preweaning with contemporary pigs in a companion study. In the duodenum, there is a downregulation of gene clusters associated with gluconeogenesis (P < 0.05). Concurrently, there was a decrease in the mRNA expression of genes for enzymes required for urea production in the liver (P < 0.05). These observations suggest that there may be less need for gluconeogenesis, and possibly less urea production from deaminated amino acids. The genomic and pathway analyses provided empirical evidence linking gene expression with phenotypic observations of piglet health and growth improvements.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have