Abstract

Passive back support exoskeletons, which support the human trunk using elements like springs and elastic bands, have demonstrated positive results in laboratory-based studies, but have seen significantly less field testing. As an intermediate step between generic lab evaluations and field tests, we conducted a single-session lab evaluation of the HeroWear Apex exoskeleton with mockup construction tasks: 20 adult men (without extensive construction experience) lifted, carried and raised lumber boards (265 cm length, up to 18 kg total load). The exoskeleton significantly reduced mean erector spinae electromyograms, with effect sizes (Cohen's d) ranging from -0.2 to -0.55 - corresponding to reductions of 5-25% relative to noexoskeleton electromyogram values. In asymmetric carrying tasks, the exoskeleton provided more assistance to the more heavily loaded erector spinae muscle. Additionally, in lifting tasks, the exoskeleton decreased trunk/hip flexion/extension range of motion and increased knee range of motion, indicating changes in lifting strategy. These results indicate potential exoskeleton benefits for lumber board carrying and will serve as the basis for further evaluations with workers in the field.Clinical Relevance- This study establishes that a passive back exoskeleton reduces erector spinae electromyograms by 525% when lifting and carrying lumber boards used in construction work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.