Abstract
Objective: To investigate the effects of SI-4650, a novel small molecule inhibitor of spermine oxidase (SMO), on the proliferation and epithelial mesenchymal transformation (EMT) of human ovarian cancer SKVO-3 cells as well as its underlying molecular mechanisms. Methods: SKVO-3 cells treated with 0 μmol/L SI-4650 were used as control group, SKVO-3 cells treated with 30, 60 μmol/L SI-4650 were used as experimental group. The effects of SI-4650 on the activity of SMO, the polyamine contents and the cellular reactive oxygen species (ROS) were detected. Cell proliferation, cell cycle and mitochondrial membrane potential change of SKVO-3 cells were tested. The effects of SI-4650 on apoptosis, migration and invasion were investigated. The effects of SI-4650 on Bax, Bcl-2, Caspase3, E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase 2 ( MMP2) and MMP 9 expression levels in SKVO-3 cells were detected. Results: Comparison between blank control group and experimental groups,SI-4650 could improve the content of SI-4650 in SKVO-3 cells. SI-4650 could inhibit the activity of SMO (P<0.01), reduce the ROS (P<0.01)and polyamine content in SKVO-3 cells (P<0.01). Treatment of SKVO-3 cells with SI-4650 inhibited the proliferation (the inhibition rate was 32.27% and 47.31% in experimental groups), caused S-phase cell cycle arrest (P<0.01) and induced apoptosis (P<0.01). The expressions of Bax and c-Caspase3 in SKVO-3 cells were increased (P<0.01),the content of Bcl-2 was decreased (P<0.01), and the mitochondrial membrane potential was decreased (P<0.01), and the number of apoptotic cells was increased(31.41% and 43.51% in experimental groups). At the same time, SI-4650 could change the expression levels of EMT-related factors, increased the expression level of E-cad , decreased the expression levels of N-cad, Vimentin, MMP-2 and MMP-9, and inhibited the migration and invasion of SKVO-3 cells. Conclusion: SI-4650 can effectively inhibit proliferation, invasion and metastasis of human ovarian cancer SKVO-3 cells, and the mechanism may be related to its ability to depress the activity of SMO, interfere polyamine metabolism and induce cell cycle arrest, mitochondrial apoptosis and inhibit EMT. This study reveals potential application of SI-4650 in the treatment of ovarian cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have