Abstract

The aim of this study was to investigate whether a moderate-intensity static magnetic field (SMF) can enhance the killing effect of adriamycin (ADM) on K562 cells, and to explore the effects of SMF combined with ADM on K562 cells. We analyzed the metabolic activity of cells, cell cycle distribution, DNA damage, change in cell ultrastructure, and P-glycoprotein (P-gp) expression after K562 cells were exposed continuously to a uniform 8.8 mT SMF for 12 h, with or without ADM. Our results showed that the SMF combined with ADM (25 ng/ml) significantly inhibited the metabolic activity of K562 cells (P < 0.05), while neither ADM nor the SMF alone affected the metabolic activity of these cells. Cell ultrastructure was altered in the SMF + ADM group. For example, cell membrane was depressed, some protuberances were observable, and vacuoles in the cytoplasm became larger. Cells were arrested at the G2/M phase and DNA damage increased after cells were treated with the SMF plus ADM. ADM also induced the P-gp expression. In contrast, in the SMF group and SMF + ADM group, the P-gp expression was decreased compared with the ADM group. Taken together, our results showed that the 8.8 mT SMF enhanced the cytotoxicity potency of ADM on K562 cells, and the decrease in P-gp expression may be one reason underlying this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.