Abstract
Acute normoxic exercise impacts the rheological properties of red blood cells (RBC) and their senescence state; however, there is a lack of data on the effects of exercise performed in hypoxia on RBC properties. This crossover study compared the effects of acute hypoxia vs. normoxia on blood rheology, RBC senescence, and coagulation during exercise. Nine trained male cyclists completed both a session in normoxia (FiO2 = 21%) and hypoxia (FiO2 = 15.3% ≈ 2500 m). The two sessions were randomly performed, separated by one week, and consisted of an incremental and maximal exercise followed by a 20 min exercise at the first ventilatory threshold (VT1) on a home-trainer. Blood samples were taken before and after exercise to analyze hematological parameters, blood rheology (hematocrit, blood viscosity, RBC deformability and aggregation), RBC senescence markers (phosphatidylserine (PS) and CD47 exposure, intraerythrocyte reactive oxygen species (ROS), and calcium content), and blood clot viscoelastic properties. Hemoglobin oxygen saturation (SpO2) and blood lactate were also measured. In both conditions, exercise induced an increase in blood viscosity, hematocrit, intraerythrocyte calcium and ROS content, and blood lactate concentration. We also observed an increase in blood clot amplitude, and a significant drop in SpO2 during exercise in the two conditions. RBC aggregation and CD47 exposure were not modified. Exercise in hypoxia induced a slight decrease in RBC deformability which could be related to the slight increase in mean corpuscular hemoglobin concentration (MCHC). However, the values of RBC deformability and MCHC after the exercise performed in hypoxia remained in the normal range of values. In conclusion, acute hypoxia does not amplify the RBC and coagulation changes induced by an exercise bout.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have