Abstract

Diet modulates gut microbiota and plays an important role in human health. The aim of this study was to test the effect of a low-fat vegan diet on gut microbiota and its association with weight, body composition, and insulin resistance in overweight men and women. We enrolled 168 participants and randomly assigned them to a vegan (n = 84) or a control group (n = 84) for 16 weeks. Of these, 115 returned all gut microbiome samples. Gut microbiota composition was assessed using uBiome Explorer™ kits. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was quantified with the predicted clamp-derived insulin sensitivity index from a standard meal test. Repeated measure ANOVA was used for statistical analysis. Body weight decreased in the vegan group (treatment effect −5.9 kg [95% CI, −7.0 to −4.9 kg]; p < 0.001), mainly due to a reduction in fat mass (−3.9 kg [95% CI, −4.6 to −3.1 kg]; p < 0.001) and in visceral fat (−240 cm3 [95% CI, −345 to −135 kg]; p < 0.001). PREDIcted M, insulin sensitivity index (PREDIM) increased in the vegan group (treatment effect +0.83 [95% CI, +0.48 to +1.2]; p < 0.001). The relative abundance of Faecalibacterium prausnitzii increased in the vegan group (+5.1% [95% CI, +2.4 to +7.9%]; p < 0.001) and correlated negatively with changes in weight (r = −0.24; p = 0.01), fat mass (r = −0.22; p = 0.02), and visceral fat (r = −0.20; p = 0.03). The relative abundance of Bacteroides fragilis decreased in both groups, but less in the vegan group, making the treatment effect positive (+18.9% [95% CI, +14.2 to +23.7%]; p < 0.001), which correlated negatively with changes in weight (r = −0.44; p < 0.001), fat mass (r = −0.43; p < 0.001), and visceral fat (r = −0.28; p = 0.003) and positively with PREDIM (r = 0.36; p < 0.001), so a smaller reduction in Bacteroides fragilis was associated with a greater loss of body weight, fat mass, visceral fat, and a greater increase in insulin sensitivity. A low-fat vegan diet induced significant changes in gut microbiota, which were related to changes in weight, body composition, and insulin sensitivity in overweight adults, suggesting a potential use in clinical practice.

Highlights

  • IntroductionEvidence from previous studies suggests that obese people have a reduced number of bacterial species (“bacterial species richness”) [2] and relatively less abundance of the phyla Bacteroidetes compared to their lean counterparts [3]

  • The gut microbiota play an important role in human physiology and health

  • Little information is available on how the interaction between diet and the gut may, in turn, be associated with metabolic effects. In this randomized clinical trial, we explored the effects of a low-fat vegan diet on gut microbiota composition and, in turn, how changes in the microbiota were associated with changes in body weight, body composition, and insulin resistance in overweight individuals

Read more

Summary

Introduction

Evidence from previous studies suggests that obese people have a reduced number of bacterial species (“bacterial species richness”) [2] and relatively less abundance of the phyla Bacteroidetes compared to their lean counterparts [3]. A reduced ratio of Bacteroidetes to Firmicutes has been shown to be associated with obesity and other related metabolic disorders [4]. Diet composition is known to modulate gut microbiota composition [5,6]. Long-term adherence to a predominantly plant-based dietary pattern (e.g., a vegetarian or vegan diet) leads to altered gut microbiota composition, compared with that of omnivores [7]. Vegetarian and vegan diets have been shown to be effective in weight management [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call