Abstract
An experiment was conducted to assess the effects of a novel and proprietary high-protein corn product [56% crude protein (CP)] relative to other common sources of protein on the lactation performance of dairy cows. Twenty-four Holstein cows (620 ± 47.7 kg of body weight, 111 ± 34 d in milk, 2.28 ± 0.46 lactations; mean ± standard deviation) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design balanced for carryover effects. Cows were individually fed 1 of 4 diets with a different protein concentrate source during each 28-d period, including soybean meal (SBM), high-protein corn product (HPCP), soybean meal with rumen-bypass soy protein (SBMBP), and canola meal with rumen-bypass soy protein (CANBP). Diets were formulated for equal concentrations of CP and balanced to meet predicted lysine and methionine requirements. The SBM diet was formulated to provide 5.7% rumen-undegradable protein (RUP), whereas SBMBP and CANBP diets were formulated for 6.8% RUP to match HPCP. Data were analyzed using mixed models with the fixed effects of treatment, period, square, the interactions of treatment and period and of treatment and square, and the random effect of cow. The CANBP diet increased dry matter intake (DMI) compared with SBM and HPCP. Treatment affected milk yield, as SBMBP and CANBP increased yield compared with SBM, but HPCP decreased milk yield compared with all treatments. The HPCP diet reduced CP intake as a percent of total DMI and increased the CP content of orts, indicative of selection against HPCP. The HPCP diet also decreased apparent total-tract and CP digestibility, leading to less urine nitrogen excretion and greater fecal nitrogen output. The SBMBP and CANBP diets performed similarly in nearly every variable measured, except that SBMBP increased milk urea nitrogen. In conclusion, the HPCP diet reduced yield of milk and milk components, likely because of reduced apparent total-tract dry matter and CP digestibility.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have