Abstract
The objective of the present study was to assess the survival and hatching success of chickens (Gallus gallus) exposed in ovo to far-red (670-nm) LED therapy. Photobiomodulation by light in the red to near-infrared range (630-1000 nm) using low-energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing and improve recovery from ischemic injury. The mechanism of photobiomodulation at the cellular level has been ascribed to the activation of mitochondrial respiratory chain components resulting in initiation of a signaling cascade that promotes cellular proliferation and cytoprotecton. Fertile chicken eggs were treated once per day from embryonic days 0-20 with 670-nm LED light at a fluence of 4 J/cm2. In ovo survival and death were monitored by daily candling (after Day 4). We observed a substantial decrease in overall and third-week mortality rates in the light-treated chickens. Overall, there was approximately a 41.5% decrease in mortality rate in the light-treated chickens (NL: 20%; L: 11.8%). During the third week of development, there was a 68.8% decrease in the mortality rate in light-treated chickens (NL: 20%; L: 6.25%). In addition, body weight, crown-rump length, and liver weight increased as a result of the 670-nm phototherapy. Light-treated chickens pipped (broke shell) earlier and had a shorter duration between pip and hatch. These results indicate that 670-nm phototherapy by itself does not adversely affect developing embryos and may improve the hatching survival rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.