Abstract

Newborns are susceptible to hemorrhages (hemorrhagic disease of the newborn or HDN) due to vitamin K deficiency. Induction of cytochrome P450 in the fetal liver by maternal anticonvulsant therapy such as phenobarbital or phenytoin is considered to be a major cause. An observed increase in late hemorrhagic disease (LHD) in breast fed neonates gave rise to the hypothesis that PCBs and dioxins, P450-inducing contaminants present in human milk, might effect vitamin K-dependent blood coagulation. This hypothesis was studied in rats. Administration of a single oral dose of 0.003, 0.03, 0.3, 3 or 30 nmol 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) per kg bodyweight or 0.75, 4, 20, 100 or 500 μmol 2,2′,4,4′,5,5′-hexachlorobiphenyl/kg bw (HxCB) t0 female and male rats resulted in dose-related reductions of the vitamin K-dependent coagulation factor VII. The highest factor VII reduction in female rats was 44%, observed after TCDD exposure. The Lowest Observed Adverse Effect Level (LOAEL) of TCDD on female factor VII levels was 0.3 nmol/kg bw (96 ng/kg). There was a significant inverse correlation between Factor VII levels and induction of hepatic ethoxyresorufin O-deethylating (EROD) activity, reflecting CYP1A1, and total P450 content. HxCB had no effect on female coagulation factors. In contrast, in male rats only exposure to HxCB, which induces mainly CYP2B1 and 2B2, decreased both coagulation factors dramatically up to 88%. The LOAEL of HxCB on factor VII in male rats was 100 μmol/kg bw (36 mg/kg). In general, effects on coagulation factors in male rats exceeded those in females. In addition, sex-dependent differences of TCDD and HxCB were observed on the hepatic vitamin K cycle enzyme activities in female and male rats. Vitamin K-dependent (γ-glutamyl carboxylase activity was mainly induced in female rats; 2.3-fold in the highest dose group of TCDD. In male rats only vitamin K 2,3-epoxide reductase (KO-reductase) activity was induced 1.7-fold by the highest dose of HxCB. KO-reductase activity in female rats was also increased by TCDD, however, less pronounced than the carboxylase activity. Concluding, the hepatic vitamin K cycle still functions and is not blocked by TCDD or HxCB, thus explaining the observed reduction in factor VII. Finally, the possible role of P450 in vitamin K deficiency is discussed. Based on these results it is suggested to investigate the possible role of PCBs and dioxin-like compounds in LHD in more detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.