Abstract

The effects of various concentrations of deoxyglucose (DG) on the aerobic metabolism of glucose in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30°C in a standard pyrophosphate medium containing 4.5 10 7 cells/ml. 31P-nuclear magnetic resonance (NMR) spectroscopy was used to monitor DG phosphorylation and the formation of polyphosphates. The production of soluble metabolites of glucose was evaluated by 13C- and 1H-NMR and biochemical techniques. The cells were aerobically incubated with 25 mM of glucose and various concentrations of DG (0, 5 and 10 mM) in order to determine the DG concentration leading to optimum of 2-deoxy- d-glucose 6-phosphate (DG6P) formation without over-inhibiting the synthesis of other metabolites. The production of DG6P increased by about 25% when the external DG concentration was doubled (from 5 to 10 mM). The formation of polyphosphates (polyP), on the other hand, was found to be mainly conditioned by the DG concentration. The amount of polyP decreased by a factor of four upon addition of 5 mM DG and became undetectable in the presence of 10 mM DG. The glucose consumption and the production of soluble metabolites of [1- 13C]glucose were then evaluated as a function of time in both the absence and presence of 5 mM DG. The effect of DG is to decrease the glucose consumption and the formation of polyphosphates, ethanol, glycerol, trehalose, glutamate, aspartate and succinate while stimulating the formation of arginine and citrate. Upon co-addition of 25 mM glucose and 5 mM DG, the ratio between the initial rates of glucose consumption (0.16 mM/min) and DG6P production (0.027 mM/min) is about (5.9 ± 1.2), not very different from the ratio of the initial concentration of glucose and DG (= 5.0). Therefore, hexokinase can phosphorylate deoxyglucose as well as glucose. However, after 100 min of incubation, the glucose concentration in the external medium decreased by about 64% while only 10% of DG was phosphorylated. DG6P was formed and quickly reached the limiting value about 30 min after co-addition of glucose and DG. Nevertheless, when the maximum quantity of DG6P was obtained, the DG consumption became negligible. By contrast, the glucose consumption and the production of ethanol and glycerol, although substantially reduced by about 42%, varied linearly with time up to 80 min of incubation. Thus even in the presence of an excess of DG, glycolysis is only slowed but not gradually or completely inhibited by DG. The reasons why DG6P cannot accumulate indefinitely in cells are discussed, together with the reasons why the consumption of DG, but not glucose, becomes negligible after 30 min of incubation. In the absence of DG, the amount of polyphosphates (polyP) increased regularly with time as long as glucose was sufficiently present (≥ 5 mM) in the suspension. When glucose was exhausted, long chain polyphosphates disappeared to give rise, at first, to polyP with shorter chains and finally to inorganic phosphate. In the presence of 5 mM DG, the reduction in quantity of polyP can be explained by the fact that ATP, normally used for the polyP synthesis, is now diverted to phosphorylation of DG to DG6P. The presence of 5 mM DG also had significant effects on the glutamate C2, C3 and C4 signal intensity and the production of all aminoacids. The results seem to indicate that the enzymes involved in the Krebs cycle are also affected by the presence of DG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call