Abstract

A fermentation system to test the merging of very-high-gravity (VHG) and multistage continuous culture fermentation (MCCF) technologies was constructed and evaluated for fuel ethanol production. Simulated mashes ranging from 15% to 32% w/v glucose were fermented by Saccharomyces cerevisiae and the dilution rates were adjusted for each glucose concentration to provide an effluent containing less than 0.3% w/v glucose (greater than 99% consumption of glucose). The MCCF can be operated with glucose concentrations up to 32% w/v, which indicates that the system can successfully operate under VHG conditions. With 32% w/v glucose in the medium reservoir, a maximum of 16.73% v/v ethanol was produced in the MCCF. The introduction of VHG fermentation into continuous culture technology allows an improvement in ethanol productivity while producing ethanol continuously. In comparing the viability of yeast by methylene blue and plate count procedures, the results in this work indicate that the methylene blue procedure may overestimate the proportion of dead cells in the population. Ethanol productivity (Yps) increased from the first to the last fermentor in the sequence at all glucose concentrations used. This indicated that ethanol is more effectively produced in later fermentors in the MCCF, and that the notion of a constant Yps is not a valid assumption for use in mathematical modeling of MCCFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.