Abstract
Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L−1, reducing sugars consumption from 73 to 88 g L−1 and ethanol productivity from 3.0 to 3.2 g (Lh)−1, for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h−1, compared to 0.08 h−1 of non-supplemented cultures), ethanol production (47 g L−1), reducing sugars consumption (93 g L−1) and ethanol productivity [5.6 g (Lh)−1] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect of adding yeast extract and air to the continuous fermentations resulted in 88 % increase in ethanol productivity. For all cultures, pH was not controlled, reaching low pH values (from 2.6 to 3). This feature suggested a reduced probability of contamination for prolonged continuous cultures and explained why no significant differences were found between continuous cultures fed with sterilized or non-sterilized media. Concentrations of volatile compounds quantified in the distillates (tequila) were in the allowed ranges established by the Mexican regulation of tequila (NOM-006-SCFI-2012, Norma Oficial Mexicana: Bebidas alcohólicas-Tequila-specificaciones, 2012). The preference level of the distillates was similar to that of two well-known commercial tequilas. The results suggested the possibility of implementing this innovative technology on an industrial scale, attaining high productivities and using non-sterilized agave juice.
Highlights
Agave plants are used in Mexico for the production of different alcoholic beverages; of which, tequila is the most popular
Effect of the supplementation of agave juice with yeast extract, on the compounds and kinetic parameters quantified during the continuous culture of S. cerevisiae S1 For all continuous fermentations, media were prepared by addition of 1 g L−1 ammonium sulfate and 4 g L−1 ammonium phosphate monobasic to agave juice
Agave juice is obtained by extraction of cooked heads of Agave tequilana Weber var. azul and used to be fermented in the tequila industry; it is nutritionally deficient to support a balanced yeast growth, resulting in low fermentative rates and high residual sugars, which severely limit the implementation of yeast continuous fermentations
Summary
Agave plants are used in Mexico for the production of different alcoholic beverages; of which, tequila is the most popular. Since the 1950s, some attempts have been made for beer and wine production using continuous fermentations. (1) Del Valle-Ruiz (del Valle Ruíz 2007) reported a pilot scale continuous culture of S. cerevisiae fed with agave juice; the productivity found in this system was lower than that reached in batch fermentation. This result might be explained by a microbial contamination or a nutrimental deficiency in the agave juice. (2) Moran-Marroquín et al (2008) studied the fermentative capacity and synthesis of aroma compounds of S. cerevisiae at laboratory scale using different dilution and aeration rates, and supplementing ammonium phosphate in the fed agave juice. The addition of ammonium phosphate and oxygen allowed the depletion of sugars and the increase of the dilution rate and ethanol production
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.