Abstract

The purpose of this study is to evaluate anti-inflammatory and chondro-protective effects of 1,25(OH)2D3 in human chondrocytes and SW1353 cells via investigating expressions of MMPs, TIMPs, VDR, and intracellular signalling pathway mediators such as TLR-2 and -4. The HC and SW1353 cells were treated with 1,25(OH)2D3 at 10, 100, and 1000nM concentrations in the absence/presence of TNF-α (20ng/mL) for 48h. The mRNA expressions of MMP-1, -2, -3, -9, and -13, TIMP-1 and -2, VDR, TLR-2 and -4 in HC and SW1353 cells were detected by qPCR after treatments. The cytotoxicity and cell proliferation analyses were assessed by LDH and WST-1 assay, respectively. Protein levels of MMPs, TIMPs, and VDR were analysed by immunocytochemistry and ELISA methods. TNF-α markedly increased cytotoxicity for 24, 48, 72h (p < 0.05) and vitamin D treatment was shown to diminish the cytotoxic effect of TNF-α. Cell proliferations increased by Vitamin D in a dose-dependent manner. mRNA expressions of MMP-1, -2, -3, -9, and -13, TLR-2 and -4 genes decreased with 1,25(OH)2D3 treatment (p < 0.05). VDR, TIMP-1 and -2 levels elevated after TNF-α exposure compared with the control group in HC cells (p < 0.05). Protein expression levels were determined using Western blotting, ELISA and immunocytochemistry. 1,25(OH)2D3 via binding to VDR, reversed the effects of TNF-α by inhibiting TLR-2 and 4. Decreased levels of VDR, TIMP-1 and -2 after TNF-α treatment were elevated by 1,25(OH)2D3 proportional with increasing 1,25(OH)2D3 doses. 1,25(OH)2D3 and TNF-α co-treatment decreased MMP-1, -2, -3, -9, and -13 levels were after TNF-α exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call