Abstract

The present study was performed to elucidate the possible role of SIRT1 signaling in joint inflammation in human articular chondrocytes. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were performed to detect gene products and proteins involved in tumor necrosis factor α (TNF-α)-induced inflammation and cartilage degradation in human primary chondrocytes. Matrix metalloproteinase (MMP)-2 and MMP-9 activity was evaluated by gelatin zymography. Overexpression and knockdown of SIRT1 were also performed to investigate whether SIRT1 is associated with the anti-inflammatory activity of resveratrol in chondrocytes. Resveratrol dose-dependently inhibited TNF-α-induced cyclooxygenase-2 (COX-2), MMP-1, MMP-3, MMP-13 and PGE(2) production in human chondrocytes. Moreover, MMP-2 and MMP-9 activity was increased by treatment with TNF-α; however, SIRT1 activation decreased the proinflammatory effects induced by TNF-α. In addition, treatment of SIRT1 activator and overexpression of SIRT1 inhibited the expression and activation of the main proinflammatory regulator NF-κB, which was increased by TNF-α. When SIRT1 was overexpressed in chondrocytes, the anti-inflammatory action of SIRT1 was similar to that exerted by resveratrol. SIRT1 activation deacetylates and inactivates NF-κB, and thereby, exerts an anti-inflammatory effect on chondrocytes, suggesting that SIRT1 activators could be explored as potential treatments for arthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call