Abstract

Existing signal control strategies do not consider pedestrian flows in optimizing signal parameters, which may impose significant delays on pedestrians. This study aims to investigate the rationality and effectiveness of designing signal coordination for pedestrians. A numerical case study in Japan is analyzed. Field survey is conducted to collect the geometric characteristics, signal timings and vehicular traffic condition information. In a parallel approach, the performances of signal coordination for vehicular and pedestrian traffic are estimated by using the vehicular traffic simulation tool Synchro/SimTraffic and the pedestrian simulation tool NOMAD. The results showed that the coordination for the major pedestrian flow led to a significant reduction in average delay (15%). Generally, it is concluded that the effectiveness of pedestrian signal coordination is not guaranteed but depends on the relationship between pedestrian platoon dispersion and the signal cycle length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call