Abstract

Issues concerning the use of harmful chemical fertilizers and pesticides that have large negative impacts on environmental and human health have generated increasing interest in the use of beneficial microorganisms for the development of sustainable agri-food systems. A successful microbial inoculant has to colonize the root system, establish a positive interaction and persist in the environment in competition with native microorganisms living in the soil through rhizocompetence traits. Currently, several approaches based on culture-dependent, microscopic and molecular methods have been developed to follow bioinoculants in the soil and plant surface over time. Although culture-dependent methods are commonly used to estimate the persistence of bioinoculants, it is difficult to differentiate inoculated organisms from native populations based on morphological characteristics. Therefore, these methods should be used complementary to culture-independent approaches. Microscopy-based techniques (bright-field, electron and fluorescence microscopy) allow to obtain a picture of microbial colonization outside and inside plant tissues also at high resolution, but it is not possible to always distinguish living cells from dead cells by direct observation as well as distinguish bioinoculants from indigenous microbial populations living in soils. In addition, the development of metagenomic techniques, including the use of DNA probes, PCR-based methods, next-generation sequencing, whole-genome sequencing and pangenome methods, provides a complementary approach useful to understand plant–soil–microbe interactions. However, to ensure good results in microbiological analysis, the first fundamental prerequisite is correct soil sampling and sample preparation for the different methodological approaches that will be assayed. Here, we provide an overview of the advantages and limitations of the currently used methods and new methodological approaches that could be developed to assess the presence, plant colonization and soil persistence of bioinoculants in the rhizosphere. We further discuss the possibility of integrating multidisciplinary approaches to examine the variations in microbial communities after inoculation and to track the inoculated microbial strains.

Highlights

  • The increasing demand to reduce the use of chemical fertilizers and pesticides for the development of an agri-food system sustainable for environmental and human health, as well as the current shifting in the agricultural legislation of several countries, have led to an expanded use of bioinoculants

  • The results showed intracellular root colonization by the A. chroococcum Avi2 strain since a clear and stable green fluorescence was emitted by bacterial cells and detected by fluorescence microscopy, whereas a blue fluorescence was emitted by root tissues, proving the feasibility of this approach

  • Assessing the root colonization of inoculants with beneficial effects on plant growth as well as their persistence over time in a soil is a critical issue in sustainable agriculture

Read more

Summary

Introduction

The increasing demand to reduce the use of chemical fertilizers and pesticides for the development of an agri-food system sustainable for environmental and human health, as well as the current shifting in the agricultural legislation of several countries, have led to an expanded use of bioinoculants. Culture-dependent methods have several advantages such as they are practical and useful techniques to quantify bioinoculants especially in sterile experimental conditions, and they allow to detect only viable cells and bacterial inoculants that are competitive and able to persist overtime.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call