Abstract

Coastal vegetation can reduce extreme water levels during storm events, but the controlling factors and processes in complex estuary or delta systems are still unclear. This limits an effective implementation of nature-based coastal defences in delta mega-cities in low-lying coastal areas.To explore the effects of vegetation on storm surge dynamics and currents, we used a Finite Volume Community Ocean Model implementation for the South China Sea and the Pearl River Delta. We numerically modelled how mangroves can offer coastal protection to the large coastal cities located in the delta, such as Guangzhou and Shenzhen, during strong typhoons, like Hato (2017).Additionally, we analyzed how the effectiveness of mangroves changes under different sea level rise scenarios.Water level attenuation by mangroves is effective during extreme water level conditions and differences in mangrove forests' properties drive their coastal protection function. The local (within-wetland) attenuation of extreme water levels is more effective with wide vegetation patches and higher vegetation drag. Narrower vegetation patches can still provide non-local (upstream) water level attenuation if located in the upper estuary channels, but their design needs to avoid amplification of water levels in other delta areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call