Abstract

As the rapid development of information and communication technology systems offers limitless access to data, the risk of malicious violations increases. A network intrusion detection system (NIDS) is used to prevent violations, and several algorithms, such as shallow machine learning and deep neural network (DNN), have previously been explored. However, intrusion detection with imbalanced data has usually been neglected. In this paper, a cost-sensitive neural network based on focal loss, called the focal loss network intrusion detection system (FL-NIDS), is proposed to overcome the imbalanced data problem. FL-NIDS was applied using DNN and convolutional neural network (CNN) to evaluate three benchmark intrusion detection datasets that suffer from imbalanced distributions: NSL-KDD, UNSW-NB15, and Bot-IoT. The results showed that the proposed algorithm using FL-NIDS in DNN and CNN architecture increased the detection of intrusions in imbalanced datasets compared to vanilla DNN and CNN in both binary and multiclass classifications.

Highlights

  • IntroductionFocal Loss for Minority Classification in Network Intrusion Detection

  • The term true positive (TP) refers to correctly predicted values “M”, which means that the value of the actual class is “M”

  • Both models that utilized focal loss converged faster compared to deep neural network (DNN) CE, convolutional neural network (CNN) CE, DNN SMOTE, and CNN SMOTE

Read more

Summary

Introduction

Focal Loss for Minority Classification in Network Intrusion Detection. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call