Abstract
Constraint-induced movement therapy (CIMT) is one of the most popular treatments for enhancing upper and lower extremity motor activities and participation in patients following a stroke. However, the effect of CIMT on balance is unclear and needs further clarification. The aim of this research was to estimate the effect of CIMT on balance and functional mobility in patients after stroke. After reviewing 161 studies from search engines including Google Scholar, EBSCO, PubMed, PEDro, Science Direct, Scopus, and Web of Science, we included eight randomized controlled trials (RCT) in this study. The methodological quality of the included RCTs was verified using PEDro scoring. This systematic review showed positive effects of CIMT on balance in three studies and similar effects in five studies when compared to the control interventions such as neuro developmental treatment, modified forced-use therapy and conventional physical therapy. Furthermore, a meta-analysis indicated a statistically significant effect size by a standardized mean difference of 0.51 (P = 0.01), showing that the groups who received CIMT had improved more than the control groups. However, the meta-analysis results for functional mobility were statistically insignificant, with an effect size of −4.18 (P = 0.16), indicating that the functional mobility improvements in the investigated groups were not greater than the control group. This study’s findings demonstrated the superior effects of CIMT on balance; however, the effect size analysis of functional mobility was statistically insignificant. These findings indicate that CIMT interventions can improve balance-related motor function better than neuro developmental treatment, modified forced-use therapy and conventional physical therapy in patients after a stroke.
Highlights
The second most common cause of death and disability worldwide was stroke [1], with more than 116 years of healthy life lost worldwide each year due to deaths and disability related to strokes [2]
constraint-induced movement therapy (CIMT) was first developed for the upper extremity and consisted of constraining the unaffected upper extremity to improve the function of the paralyzed upper extremity [14,15]
The balance meta-analysis showed an effect size with standardized mean difference (SMD) of 0.51, indicating that the experimental group CIMT intervention was superior in improving balance among patients after stroke than the control group interventions
Summary
The second most common cause of death and disability worldwide was stroke [1], with more than 116 years of healthy life lost worldwide each year due to deaths and disability related to strokes [2]. Many advanced rehabilitation methods to treat patients after a stroke, including robotic-assisted technology [3–5], transcranial brain stimulation [2,5,6], virtual reality techniques [7], and game-based rehabilitation [8], have emerged in recent decades. Along with these advanced rehabilitation methods, the traditional approaches of neurodevelopmental treatment [9], proprioceptive neuromuscular facilitation [9–11], constraint-induced movement therapy (CIMT) [12], and task-oriented training [13] continue to be popular and used for the rehabilitation of patients after stroke to improve strength, balance, gait, function, and quality of life. Despite being designed to improve upper extremity function, many researchers have surprisingly noted improvements in balance as well [21–23]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have