Abstract
Artificial neural networks are one of the tools of modern text recognising systems from images, including handwritten ones. The article presents the results of a computational experiment aimed at analyzing the quality of recognition of handwritten digits by two artificial neural networks (ANNs) with different architecture and parameters. The correctness indicator was used as the basic criterion for the quality of character recognition. In addition, the number of neurons and their layers and the ANNs learning time were analyzed. The Python language and the TensorFlow library were used to create the ANNs, and software for their learning and testing. Both ANNs were learned and tested using the same big sets of images of handwritten characters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.