Abstract

Nature-inspired coating with polydopamine (PDA) is a promising way to improve the performance of graphene oxide (GO) based nanocomposites due to its high ability to enhance interactions in matrix-disperse systems. Here, we examined the capability of two types of PDA to develop the reinforced polyvinyl alcohol (PVA)/GO hydrogels. In the first mode, dopamine hydrochloride was polymerized as nanoparticles and then incorporated into PVA solution with GO nanoplatelets (P-NG hydrogel). In the second mode, polydopamine was polymerized in the presence of GO nanoparticles to obtain PDA surface-modified GO and then PVA nanocomposite hydrogel (P-CG sample). Rheological and tensile findings revealed that both types of PDA could act as a coupling agent and dramatically ameliorate viscoelastic and mechanical properties through establishment of hydrogen bonds and π-π interactions with the composite components. Also, PDA made the PVA-GO interfacial adhesion robust, leading to excellent self-healing properties. The outputs indicated that PDA in direct coated state could present better efficiency compared to the PDA nanoparticles. Moreover, porous network structure size in P-CG was smaller compared to that in P-NG, due to the increased crosslink density and higher net points interaction between the GO platelets and PVA chains, which leads to strong interfacial adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call