Abstract

Red-emitting carbon dots have attracted much attention because of their excellent fluorescence properties. It is of great significance to synthesize red-emitting carbon dots with high fluorescence quantum yield. Herein, by using citric acid and 1,8-diaminonaphthalene as precursors in N, N-dimethylformamide, novel carbon dots (NC-CDs) exhibiting red emission at 607 nm upon excitation at 514 nm were synthesized via a solvent-thermal approach. NC-CDs aggregated in lipid droplets of cells, and hemin quenched their fluorescence. Subsequently, cationic surfactants cetyltrimethylammonium bromide, anionic surfactants sodium dodecyl sulfate and nonionic surfactants were used to functionalize the NC-CDs. The results indicated that both ionic surfactants increased the fluorescence quantum yield and solubility of NC-CDs with extended fluorescence lifetime. This approach is applicable to a class of carbon dots that possess both carboxyl and amino groups. Additionally, these functionalized NC-CDs exhibited high recognition sensitivity towards ClO− and Cu2+ respectively except for hemin. This study provides a novel approach for the synthesis of highly red-emitting carbon dots, expanding their applications in the field of biological imaging and sensing. The findings hold significant implications for the real-time monitoring of hemin in lipid droplets. Additionally, this work offers a simple method to dramatic enhance their fluorescence quantum yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.