Abstract

Tin selenides possess layered structure and high theoretical capacity, which is considered as desirable anode material for lithium-ion batteries. However, its further development is limited by the low intrinsic electrical conductivity and sluggish reaction kinetics. Herein, a well-designed structure of SnSe2nanosheet attached on N, Se co-doped carbon nanofibers (SnSe2@CNFs) is fabricated as self-standing anodes for lithium-ion batteries. The integration of structural engineering and heteroatom doping enables accelerated electrons transfer and rapid ion diffusion for boosting Li+storage performance. Impressively, the flexible SnSe2@CNFs anodes exhibit inspiring capacity of 837.7 mAh g-1after 800 cycles at 1.2 C with coulombic efficiency almost 100% and superior rate performance 419.5 mAh g-1at 2.4 C. The kinetics analysis demonstrates the pseudocapacitive characteristic of SnSe2@CNFs promotes the storage property. This work sheds light on the hierarchical electrode construction towards high-performance energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.