Abstract

Conformal prediction is a new framework producing region predictions with a guaranteed error rate. Inductive conformal prediction (ICP) was designed to significantly reduce the computational cost associated with the original transductive online approach. The drawback of inductive conformal prediction is that it is not possible to use all data for training, since it sets aside some data as a separate calibration set. Recently, cross-conformal prediction (CCP) and bootstrap conformal prediction (BCP) were proposed to overcome that drawback of inductive conformal prediction. Unfortunately, CCP and BCP both need to build several models for the calibration, making them less attractive. In this study, focusing on bagged neural network ensembles as conformal predictors, ICP, CCP and BCP are compared to the very straightforward and cost-effective method of using the out-of-bag estimates for the necessary calibration. Experiments on 34 publicly available data sets conclusively show that the use of out-of-bag estimates produced the most efficient conformal predictors, making it the obvious preferred choice for ensembles in the conformal prediction framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.