Abstract
Deep learning architectures have proved versatile in a number of drug discovery applications, including the modeling of in vitro compound activity. While controlling for prediction confidence is essential to increase the trust, interpretability, and usefulness of virtual screening models in drug discovery, techniques to estimate the reliability of the predictions generated with deep learning networks remain largely underexplored. Here, we present Deep Confidence, a framework to compute valid and efficient confidence intervals for individual predictions using the deep learning technique Snapshot Ensembling and conformal prediction. Specifically, Deep Confidence generates an ensemble of deep neural networks by recording the network parameters throughout the local minima visited during the optimization phase of a single neural network. This approach serves to derive a set of base learners (i.e., snapshots) with comparable predictive power on average that will however generate slightly different predictions for a given instance. The variability across base learners and the validation residuals are in turn harnessed to compute confidence intervals using the conformal prediction framework. Using a set of 24 diverse IC50 data sets from ChEMBL 23, we show that Snapshot Ensembles perform on par with Random Forest (RF) and ensembles of independently trained deep neural networks. In addition, we find that the confidence regions predicted using the Deep Confidence framework span a narrower set of values. Overall, Deep Confidence represents a highly versatile error prediction framework that can be applied to any deep learning-based application at no extra computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.