Abstract
[1] Long lead rainfall forecasts are highly valuable for planning and management of water resources and agriculture. In this study, we establish multiple statistical calibration and bridging models that use general circulation model (GCM) outputs as predictors to produce monthly rainfall forecasts for Australia with lead times up to 8 months. The statistical calibration models make use of raw forecasts of rainfall from a coupled GCM, and the statistical bridging models make use of sea surface temperature (SST) forecasts of the GCM. The forecasts from the multiple models are merged through Bayesian model averaging to take advantage of the strengths of individual models. The skill of monthly rainfall forecasts is generally low. Compared to forecasting seasonal rainfall totals, it is more challenging to forecast monthly rainfall. However, there are regions and months for which forecasts are skillful. In particular, there are months of the year for which forecasts can be skillfully made at long lead times. This is most evident for the period of November and December. Using GCM forecasts of SST through bridging clearly improves monthly rainfall forecasts. For lead time 0, the improvement is particularly evident for February to March, July and October to December. For longer lead times, the benefit of bridging is more apparent. As lead time increases, bridging is able to maintain forecast skill much better than when only calibration is applied.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have