Abstract

Langevin dynamics simulations are employed to study the dynamical properties of a flexible polymer in an active bath. The diffusion of the centre of mass and end-to-end distance fluctuation are particularly analysed. We modulate both active force and active particle size to probe the activity-induced facilitation of polymer dynamics. Results indicate diffusivity and chain relaxation time can be well scaled by the effective temperature of the active bath. In addition, diffusion dynamics demonstrates an anomalous superdiffusive behaviour in short time scales, which becomes more prominent with increasing active particle size. Lastly, we extract the effective viscosity experienced by the probed chain, showing a sharp decrease with increment of effective temperature. The attenuation of effective viscosity due to activity might be responsible for the facilitated polymer dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call