Abstract

The study of complex behavior of biological systems has become increasingly dependent on evolutionary network modeling. In particular, multi-omics networks capture interactions between biomolecules such as proteins and metabolites, providing a basis for predicting relationships between such biomolecules and various phenotypic traits of complex diseases. In this paper, we introduce an integrative framework that given a multi-omics network representing a cohort of subjects, learns expressive representations for network nodes, and combines the learned nodes representations with the biological profiles of individual subjects for enriched representation of the subjects. With extensive empirical evaluation using real-world multi-omics networks, we show that our proposed framework significantly outperforms existing and baseline methods in terms of subject representation accuracy, particularly when the multi-omics network representing the cohort is sparse and structured and therefore, more informative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.