Abstract

We have found that Ta-based additive films in our catalyst system act as adhesives, which improves electrocatalyst durability by immobilizing the catalyst Pt NPs on the graphitic Vulcan carbon support. Furthermore, we suggest that this can be a general design principle in producing higher-durability electrocatalysts on graphitic supports. By electrochemically probing the contributing roles of the tantalum oxide (Ta2O5) and the polyphosphate (PPA) components in separate samples, we show that these combine to produce the observed improvement in activity and durability of our best catalyst, the tantalum polyphosphate (TaOPO4)-treated sample. To control variables for a valid electrochemical comparison, such as dissimilar catalyst particle size distributions and variations in surface coverage, four new catalyst samples closely matched in every way were prepared: (1) Pt/VC, (2) Pt/[PPA/VC], (3) Pt/[Ta2O5/VC], and (4) Pt[TaOPO4/VC]. We present HR-TEM/HAADF-STEM, EDS elemental mapping, PXRD, XPS, and electrochemi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call