Abstract

This paper’s main aim was to explain the process of characterising the structural over-strength factor (R), seismic behaviour factor (Q), and the effective elastic stiffness, Keff, of cantilever-reinforced concrete (RC) urban bridge columns with solid circular cross-sections for use in seismic design under the Serviceability Limit State (SLS). Similarly, mathematical models have been proposed to determine the average values of effective stiffness and seismic response modification factors suggested for cantilever-reinforced concrete bridge columns at SLS. This is because multiple design codes stipulate that cantilever RC bridge columns must meet the SLS requirements. Therefore, to comply, the lateral displacement ductility demand must not exceed unity after a moderate or small earthquake. While the behaviour of the materials remains in the elastic range, this performance criterion can be conservative. If the materials undergo small deformations, the slight damage can be quickly repaired to meet the SLS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call