Abstract
Thallium (Tl) has drawn wide concern due to its high toxicity even at extremely low concentrations, as well as its tendency for significant accumulation in the human body and other organisms. The need to develop effective strategies for trace Tl removal from drinking water is urgent. In this study, the removal of trace Tl (0.5 μg L−1) by conventional quartz sand filtration enhanced by nanosized manganese dioxide (nMnO2) has been investigated using typical surface water obtained from northeast China. The results indicate that nMnO2 enhanced quartz sand filtration could remove trace Tl(I) and Tl(III) efficiently through the adsorption of Tl onto nMnO2 added to a water matrix and onto nMnO2 attached on quartz sand surfaces. Tl(III)-HA complexes might be responsible for higher residual Tl(III) in the effluent compared to residual Tl(I). Competitive Ca2+ cations inhibit Tl removal to a certain extent because the Ca2+ ions will occupy the Tl adsorption site on nMnO2. Moreover, high concentrations of HA (10 mgTOC L−1), which notably complexes with and dissolves nMnO2 (more than 78%), resulted in higher residual Tl(I) and Tl(III). Tl(III)-HA complexes might also enhance Tl(III) penetration to a certain extent. Additionally, a higher pH level could enhance the removal of trace Tl from surface water. Finally, a slight increase of residual Tl was observed after backwash, followed by the reduction of the Tl concentration in the effluent to a “steady” state again. The knowledge obtained here may provide a potential strategy for drinking water treatment plants threatened by trace Tl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.