Abstract

In this study, triphenylaniline-based porous organic polymers (TPA-POPs) were successfully prepared by the Friedel–Crafts reaction and applied to adsorb malachite green (MG) dye from water. The TPA-POP was characterized using TEM, SEM, FTIR, 13C (CP/MAS) NMR, BET surface area, and XRD analysis. The results exhibited that the TPA-POP has a high surface area (1625.14 m2/g) with pore volume (0.353 cm3/g) and pore radius (1.57 nm) that reflect the high quantity of MG adsorbed on the TPA-POP. The polymer was evaluated as an excellent adsorbent for MG adsorption from water using the batch method. MG dye removal was optimized as 99.60% (at pH: 6.0, adsorbent dosage (m): 0.01 g, temperature (T): 45 °C, and contact time (t): 300 min). The kinetic data follow the Elovich model, while the isotherm data fit the Langmuir model well with uptake capacity (755.72 mg/g) at T: 45 °C. According to thermodynamic parameters, the adsorption process was endothermic and spontaneous. The adsorption of MG on the TPA-POP occurred via different mechanisms (π–π interaction, electrostatic attraction, and hydrogen bonding). Reusability experiments exhibited that the TPA-POP still maintained high removal efficiency (82.12%) after five cycles. In conclusion, the TPA-POP is a promising adsorbent owing to its cost-effectiveness, high adsorption capacity, high surface area, excellent reusability, and efficient MG removal from aqueous media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.