Abstract

A novel type of adsorbent, hydrous zirconium oxide (HZO) based on polymer hydrogel (HZO-P(TAA/HEA) hydrogel), was synthesized by irradiation polymerization and in situ precipitation methods to remove heavy metals from water efficiently. The composite hydrogel was characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), swelling kinetics, zeta potential, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy (XPS). The results indicated that HZO nanoparticles were stably loaded on the P(TAA/HEA) hydrogel, swelling properties, and thermal stability were also enhanced after the loading of HZO. Besides, the batch adsorption experiments revealed that adsorption time, pH, initial concentration of heavy metals, and coexisting ions influenced the adsorption process significantly. The adsorption capacities of HZO-P(TAA/HEA) hydrogel for Pb2+, Cu2+, Cd2+, and Ni2+ was 0.620mmolg-1, 0.615mmolg-1, 0.701mmolg-1, and 0.700mmolg-1, respectively. The adsorption isotherms fitted Langmuir equation well, and the adsorption kinetics followed second-order kinetics; it was manifested that the priority of competitive adsorption followed the order: Pb2+ > Cu2+ > Ni2+ > Cd2+. Furthermore, based on the analysis results of FTIR and XPS, the adsorption mechanism could mainly be the complexation between hydrous zirconia and heavy metals. The results indicate that nanocomposite HZO-P(TAA/HEA) hydrogel is a promising heavy metal adsorbent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call