Abstract

In this paper, we address the development of a global optimization procedure for the problem of designing a water distribution network, including the case of expanding an already existing system, that satisfies specified flow demands at stated pressure head requirements. The proposed approach significantly improves upon a previous method of Sherali et al. (1998) by way of adopting tighter polyhedral relaxations, and more effective partitioning strategies in concert with a maximal spanning tree-based branching variable selection procedure. Computational experience on three standard test problems from the literature is provided to evaluate the proposed procedure. For all these problems, proven global optimal solutions within a tolerance of 10−4% and/or within 1$ of optimality are obtained. In particular, the two larger instances of the Hanoi and the New York test networks are solved to global optimality for the very first time in the literature. A new real network design test problem based on the Town of Blacksburg Water Distribution System is also offered to be included in the available library of test cases, and related computational results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.