Abstract

ABSTRACTStomata are epidermal valves that facilitate gas exchange between plants and their environment. Stomatal patterning is regulated by the EPIDERMAL PATTERING FACTOR (EPF) family of secreted peptides: EPF1 enforces stomatal spacing, whereas EPIDERMAL PATTERNING FACTOR-LIKE9 (EPFL9), also known as Stomagen, promotes stomatal development. It remains unknown, however, how far these signaling peptides act. Utilizing Cre-lox recombination-based mosaic sectors that overexpress either EPF1 or Stomagen in Arabidopsis cotyledons, we reveal a range within the epidermis and across the cell layers in which these peptides influence patterns. To determine their effective ranges quantitatively, we developed a computational pipeline, SPACE (stomata patterning autocorrelation on epidermis), that describes probabilistic two-dimensional stomatal distributions based upon spatial autocorrelation statistics used in astrophysics. The SPACE analysis shows that, whereas both peptides act locally, the inhibitor EPF1 exerts longer range effects than the activator Stomagen. Furthermore, local perturbation of stomatal development has little influence on global two-dimensional stomatal patterning. Our findings conclusively demonstrate the nature and extent of EPF peptides as non-cell autonomous local signals and provide a means for quantitative characterization of complex spatial patterns in development.This article has an associated ‘The people behind the papers’ interview.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.