Abstract

Stomata are small pores on the surface of land plants that are involved in gas exchange and water vapor release, and their function is critical for plant productivity and survival. As such, understanding the mechanisms by which stomata develop and pattern has tremendous agronomic value. This paper describes two phenotypic methods using Arabidopsis cotyledons that can be used to characterize the genes controlling stomatal development and patterning. Presented first are procedures for analyzing the stomatal phenotypes using toluidine blue O-stained cotyledons. This method is fast and reliable and does not require the use of epidermal peels, which are widely used for phenotypic analyses but require specialized training. Due to the presence of multiple cysteine residues, the identification and generation of bioactive EPF peptides that have a role in stomatal development have been challenging. Thus, presented second is a procedure used to identify stomatal ligands and monitor their biological activity by bioassays. The main advantage of this method is that it produces reproducible data relatively easily while reducing the amount of peptide solution and the time required to characterize the role of the peptides in controlling stomatal patterning and development. Overall, these well-designed protocols enhance the efficiency of studying the potential stomatal regulators, including cysteine-rich secretory peptides, which require highly complex structures for their activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call