Abstract

<p>Emerging intelligent and highly interactive services result in the mass deployment of internet of things (IoT) devices. They are dominating wireless communication networks compared to human-held devices. Random access performance is one of the most critical issues in providing quick responses to various IoT services. In addition to the anchor carrier, the non-anchor carrier can be flexibly allocated to support the random access procedure in release 14 of the 3rd generation partnership project. However, arranging more non-anchor carriers for the use of random access will squeeze the data transmission bandwidth in a narrowband physical uplink shared channel. In this paper, we propose the prediction-based random access resource allocation (PRARA) scheme to properly allocated the non-anchor carrier by applying reinforcement learning. The simulation results show that the proposed PRARA can improve the random access performance and effectively use the radio resource compared to the rule-based scheme. </p> <p> </p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.