Abstract
We construct new families of quasimorphisms on many groups acting on CAT(0) cube complexes. These quasimorphisms have a uniformly bounded defect of 12, and they “see” all elements that act hyperbolically on the cube complex. We deduce that all such elements have stable commutator length at least 1/24. The group actions for which these results apply include the standard actions of right-angled Artin groups on their associated CAT(0) cube complexes. In particular, every non-trivial element of a right-angled Artin group has stable commutator length at least 1/24. These results make use of some new tools that we develop for the study of group actions on CAT(0) cube complexes: the essential characteristic set and equivariant Euclidean embeddings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.