Abstract
We show that group actions on irreducible ${\rm CAT(0)}$ cube complexes with no free faces are uniquely determined by their $\ell^1$ length function. Actions are allowed to be non-proper and non-cocompact, as long as they are minimal and have no finite orbit in the visual boundary. This is, to our knowledge, the first length-spectrum rigidity result in a setting of non-positive curvature (with the exception of some particular cases in dimension 2 and symmetric spaces). As our main tool, we develop a notion of cross ratio on Roller boundaries of ${\rm CAT(0)}$ cube complexes. Inspired by results in negative curvature, we give a general framework reducing length-spectrum rigidity questions to the problem of extending cross-ratio preserving maps between (subsets of) Roller boundaries. The core of our work is then to show that, when there are no free faces, these cross-ratio preserving maps always extend to cubical isomorphisms. All our results equally apply to cube complexes with variable edge lengths. As a special case of our work, we construct a compactification of the Charney-Stambaugh-Vogtmann Outer Space for the group of untwisted outer automorphisms of an (irreducible) right-angled Artin group. This generalises the length function compactification of the classical Culler-Vogtmann Outer Space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.