Abstract

This article derives the effective poroelastic properties of N-layered composite assemblage. The derivation is based on the Hashin composite sphere assemblage (CSA) model and the linear elastic solution of n-layer coated inclusion-reinforced materials proposed by Hervé and Zaoui. The contribution of this study consists in the consideration of the poromechanical coupling to derive not only the bulk and shear drained moduli but also the Biot coefficient and the solid Biot modulus. The theoretical solutions are used for studying the oolitic limestone from Bourgogne (France), in which the microstructure exhibits generally an assemblage of oolite grains surrounded by a matrix. They are linked via interphase where most of the macropores locate. A two-step homogenisation scheme is proposed. The first step consists in upscaling the mesoscopic poroelastic properties of each porous phase by using the differential self-consistent scheme. In the second step, the three different porous constituents (oolite, ITZ and matrix) are homogenised using the CSA model. Results are validated against the data collected from the open literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.