Abstract

We formulate an effective theory for the atom-mediated photon-photon interactions in a two-dimensional ``photon fluid'' confined in a Fabry-Perot resonator. With the atoms modelled by a collection of anharmonic Lorentz oscillators, the effective interaction is evaluated to second order in the coupling constant (the anharmonicity parameter). The interaction has the form of a renormalized two-dimensional delta-function potential, with the renormalization scale determined by the physical parameters of the system, such as density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. For realistic values of the parameters, the perturbation series has to be resummed, and the effective interaction becomes independent of the ``bare'' strength of the anharmonic term. The resulting expression for the non-linear Kerr susceptibility, is parametrically equal to the one found earlier for a dilute gas of two-level atoms. Using our result for the effective interaction parameter, we derive conditions for the formation of a photon fluid, both for Rydberg atoms in a microwave cavity and for alkali atoms in an optical cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call