Abstract

We propose a new parametrization of motion primitives based on Bézier curves that suits perfectly path-planning applications (and environment exploration) of wheeled mobile robots. The individual motion primitives can simply be calculated taking into account the requirements of path planning and the constraints of a vehicle, given in the form of the starting and ending orientations, velocities, turning rates, and curvatures. The proposed parametrization provides a natural geometric interpretation of the curve. The solution of the problem does not require optimization and is obtained by solving a system of simple polynomial equations. The resulting planar path composed of the primitives is guaranteed to be C2 continuous (the curvature is therefore continuous). The proposed primitives feature low order Bézier (third order polynomial) curves. This not only provides the final path with minimal required turns or unwanted oscillations that typically appear when using higher-order polynomial primitives due to Runge’s phenomenon but also makes the approach extremely computationally efficient. When used in path planning optimizers, the proposed primitives enable better convergence and conditionality of the optimization problem due to a low number of required parameters and a low order of the polynomials. The main contribution of the paper therefore lies in the analytic solution for the third-order Bézier motion primitive under given boundary conditions that guarantee continuous curvature of the composed spline path. The proposed approach is illustrated on some typical scenarios of path planning for wheeled mobile robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.