Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit compelling dimension-dependent exciton-dominated optical behavior influenced by thickness and lateral quantum confinement effects. Thickness quantum confinement effects have been observed; however, experimental optical property assessment of nanoscale lateral dimension monolayer TMDCs is lacking. Here, we employ ex situ spectroscopic ellipsometry to evaluate laterally coalescing monolayer metalorganic chemical vapor deposited MoS2. A multisample analysis is used to constrain Bruggeman and Maxwell-Garnett effective medium approximations and the effective dielectric functions are derived for laterally coalesced and uncoalesced MoS2 films (∼10-94% surface coverage for ∼10-140 nm lateral grain sizes). This analysis demonstrates the ability to probe MoS2 optical exciton behavior at growth-relevant grain sizes in relation to chemical vapor nucleation density, ripening, and lateral growth conditions. Our analysis is pertinent toward expected in situ epitaxial 2D TMDC film growth metrology to enable the facile development of monolayer films with targeted process-dependent optical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call