Abstract

We investigate the capabilities of an effective non-retarded formalism (ENR) for the exploration and design of nanoparticle composites with specific optical properties. We consider a composite material comprising periodically distributed metallic spheres in a dielectric host matrix. The effective macroscopic dielectric function of the composite medium is obtained by means of the ENR and is used to calculate the electromagnetic response of a slab made of an inhomogeneous material. This response is compared with that obtained by using the layer Korringa–Kohn–Rostoker wave calculation method (LKKR). We analyze the optical properties for different filling fractions, especially in the vicinity of the resonance frequencies of the macroscopic dielectric function. We notice that for dense systems within the long wavelength regime, the results of some analytical theories developed by other authors do not properly describe the multipolar excitations and interactions of orders higher than the dipole, in contrast with the results obtained by using an ENR. Therefore, those methods are not suitable for the design of compound films with novel properties. We show that by appropriately choosing the parameters of the composite, it is possible to achieve a tunable absorber film, and more generally, we show that ENR is a versatile tool for the design of nanoparticle composite materials with specific properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.