Abstract

Optical materials with special optical properties are widely used in a broad span of technologies, from computer displays to solar energy utilization leading to large dataset accumulated from years of extensive materials synthesis and optical characterization. Previously, machine learning models have been developed to predict the optical absorption spectrum from a materials characterization image or vice versa. Herein we propose TLOpt, a transfer learning based inverse optical materials design algorithm for suggesting material compositions with a desired target light absorption spectrum. Our approach is based on the combination of a deep neural network model and global optimization algorithms including a genetic algorithm and Bayesian optimization. A transfer learning strategy is employed to solve the small dataset issue in training the neural network predictor of optical absorption spectrum using the Magpie materials composition descriptor. Our extensive experiments show that our algorithm can inverse design the materials composition with stoichiometry with high accuracy. The source code is freely available athttps://github.com/usccolumbia/TLOpt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.