Abstract

We present a theoretical study of two spinless fermion wires coupled to a three dimensional semiconducting substrate. We develop a mapping of wires and substrate onto a system of two coupled two-dimensional ladder lattices using a block Lanczos algorithm. We then approximate the resulting system by narrow ladder models, which can be investigated using the density-matrix renormalization group method. In the absence of any direct wire-wire hopping we find that the substrate can mediate an effective wire-wire coupling so that the wires could form an effective two-leg ladder with a Mott charge-density-wave insulating ground state for arbitrarily small nearest-neighbor repulsion. In other cases the wires remain effectively uncoupled even for strong wire-substrate hybridizations leading to the possible stabilization of the Luttinger liquid phase at finite nearest-neighbor repulsion as found previously for single wires on substrates. These investigations show that it may be difficult to determine under which conditions the physics of correlated one-dimensional electrons can be realized in arrays of atomic wires on semiconducting substrates because they seem to depend on the model (and consequently material) particulars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call