Abstract

The main aim of this research work is to perform the morphological operations with reduced time complexity and area complexity. Morphological operation is the key element in any image processing. Finding the maximum and minimum using a window of defined size will imply to the morphological dilation and erosion respectively. So the proposed algorithm should be fast in the comparison and sorting, this way the time complexity could be reduced. It’s believed that the anchor concept will fetch this cause. The idea behind this is it fixes a pixel and setting it as the center pixel all the surrounding pixels will be processed. Moreover this is now been implemented for rectangular structuring element. This paper attempts the same for flat and 3D structuring elements. Hyper-spectral Imaging is a developing zone of remote detecting applications. Hyper-spectral pictures incorporate more extravagant and better otherworldly data than the multi-spectral pictures got previously. Hyper-otherworldly pictures are described by an exchange off between the unearthly and spatial resolution. The principle issue of the hyper-ghostly information is the generally low spatial goal. For arrangement, the serious issue brought about by low spatial goal is the blended pixels. Blended pixels alluded to the pixels which are involved by more than one land spread class. In the proposed procedure another strategy is utilized to address the issue of blended pixels and to get a better spatial goal of the land spread characterization maps. The strategy misuses the upsides of both picture bunching methods and phantom dimming calculations, so as to decide the fragmentary plenitudes of the classes at a sub-pixel scale. Spatial regularization by Flank planning method is at last performed to spatially find the got classes at sub-pixel level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.